
CMR Pull Request Review Checklist
This list is intended for people conducting of as described in the . When reviewing a pull requestcode reviews pull requests Code Change Helper
the reviewer should use the following checklist to verify that the code will not break clients or cause problems and that the code/tests are correct,
complete, follow conventions/guidelines, and can be merged into the master branch without issue. Some of the items on the list are very specific,
e.g., no TODOs, while others are more open ended (well structured tests). The list is intended to make the job of reviewing pull requests easier
and more repeatable by identifying areas in pull requests that commonly need addressing.

When reviewing a pull request, start at the top of the list and consider the most important things that could lead to problems. These are outlined
as a set of questions in the section. Check off the boxes when you are satisfied that each of the criteria is met. Then proceed toMost Important
the more specific items below in the , , and sections. Check off each box that is satisfied by the pull request andGeneral Testing Documentation a

. If all the boxes are checked then approve the request. Otherwise, mark it as ,dd comments to the pull request for those that are not needing work
or, if there are critical errors, it.decline

Most Important (Primum non nocere - "First, do no harm")

Could this change break clients?

Do the changes handle data that may have been previously saved or indexed by an older version of the code?

What is the operational impact of this change - are there any potential issues such as special deployment procedures, performance
issues, etc.?

Are there tests for all cases (including edge cases)?

What could go wrong?

General

Does the code do what it's supposed to do?

Have they implemented all of the acceptance criteria?

There are no overly-long or complicated functions that should to be broken up for readability.

Are web API parameters validated?

Are symbols used rather than “magic number” constants or string constants? (OK in tests, particularly for error messages or response
codes).

There is no repeated or copy-and-paste code / tests.

There are no TODOs.

There are no stray blocks, commented out code, / s, s, s, or unnecessary logging.comment capture reveal proto-save println

All namespaces and non-trivial s/ s/ s have docstrings.def defn defmacro

There are no dangling requires, i.e., requires that were added and not used or requires that are no longer necessary due to code
removal.

CMR coding conventions are followed (indention and 100 column line limit, etc. See the CMR).Coding Style Guidelines

Idiomatic Clojure is used ().see the Clojure Style Guide

Testing

IF THE ISSUE IS A BUG FIX - a test was added that reproduces the conditions that triggered the bug.

The tests are well structured and follow current practices (/ , etc.).are are2

Documentation

Documentation was added for any(api_docs.md, README.md, , and CMR Data Partner User Guide CMR Client Partner User Guide)
new features or old documentation updated for any changed features. The partner guides are on the wiki so they cannot be updated as
part of a pull request.

Code/curl examples or sample data have been updated as necessary.

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwju4OzYxofNAhVJFz4KHdp0BtAQFgg9MAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCode_review&usg=AFQjCNGADJCNQejjJZcVbM1R5khOw2QDpw&bvm=bv.123325700,d.cWw
https://www.atlassian.com/git/tutorials/making-a-pull-request/
https://wiki.earthdata.nasa.gov/display/CMR/Code+Change+Process
https://wiki.earthdata.nasa.gov/display/CMR/Coding+Style+Guidelines
https://github.com/bbatsov/clojure-style-guide
https://wiki.earthdata.nasa.gov/display/CMR/CMR+Data+Partner+User+Guide
https://wiki.earthdata.nasa.gov/display/CMR/CMR+Client+Partner+User+Guide

Has the CHANGELOG been updated?

	CMR Pull Request Review Checklist

